Amenability Modulo an Ideal of Second Duals of Semigroup Algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hereditary properties of amenability modulo an ideal of Banach algebras

In this paper we investigate some hereditary properties of amenability modulo an ideal of Banach algebras. We show that if $(e_alpha)_alpha$ is a bounded approximate identity modulo I of a Banach algebra A and X is a neo-unital modulo I, then $(e_alpha)_alpha$ is a bounded approximate identity for X. Moreover we show that amenability modulo an ideal of a Banach algebra A can be only considered ...

متن کامل

Biprojectivty of Banach algebras modulo an ideal

In this paper, we introduce the new concept of biprojectivity of a Banach algebra modulo an ideal, as a generalization of this notion in the classical case. By using it , we obtain some necessary and sufficient conditions for contractibility of Banach algebras modulo an ideal. In particular we characterize the contractibility of quotient Banach algebras. Also we study the relationship between t...

متن کامل

hereditary properties of amenability modulo an ideal of banach algebras

in this paper we investigate some hereditary properties of amenability modulo an ideal of banach algebras. we show that if (e ) is a bounded approximate identity modulo i of a banach algebra a and x is a neo-unital modulo i, then (e ) is a bounded approximate identity for x. moreover we show that amenability modulo an ideal of a banach algebra a can be only considered by the neo-unital modulo...

متن کامل

amenability of banach algebras

chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...

15 صفحه اول

2n-Weak module amenability of semigroup algebras

‎Let $S$ be an inverse semigroup with the set of idempotents $E$‎. We prove that the semigroup algebra $ell^{1}(S)$ is always‎ ‎$2n$-weakly module amenable as an $ell^{1}(E)$-module‎, ‎for any‎ ‎$nin mathbb{N}$‎, ‎where $E$ acts on $S$ trivially from the left‎ ‎and by multiplication from the right‎. ‎Our proof is based on a common fixed point property for semigroups‎.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2016

ISSN: 2227-7390

DOI: 10.3390/math4030055